Calculus 140, section 10.3 Conic Sections

notes by Tim Pilachowski

"The conic sections arise when a double right circular cone is cut by a plane."

"Any second-degree equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ is (except in degenerate cases) an equation of a parabola, an ellipse, or a hyperbola." By using completing the square, we can determine shifts/translations (x - h) and (y - k) from "standard" position. (You'll need this for some homework exercises.)

In the *xy* real number plane, a degenerate conic can be one of the three cases shown in the lower pictures above, or the null set (i.e., no points).

conic section	basic equation	reference line	focus/ foci	vertex/ vertices	standard position (h = k = 0) symmetry	asymptote(s)
parabola						
ellipse						
hyperbola						

You know the basic quadratic function from Algebra, $y = x^2$, and its shape: a parabola.

Definition 10.1: "Let l be a fixed line and P a fixed point not on l. The set of all points in the plane equidistant from l and P is called a **parabola**."

The line *l* is called the **directrix** and the point *P* is called the **focus**. Applications:

The point midway between directrix and focus is the **vertex**. (You used this designation in Algebra.) "Standard position" is with the *x*-axis or the *y*-axis as the axis of symmetry.

The text uses the distance formula to derive standard forms $x^2 = 4cy$ and $y^2 = 4cx$. A parabola has no asymptotes.

Other applications:

The non-standard position forms are $(x-h)^2 = 4c(y-k)$ and $(y-k)^2 = 4c(x-h)$. We can use shifts/translations (just like in Algebra) to help us graph or answer questions. For finding derivatives, we have implicit differentiation (section 3.6).

Example A. The vertex is (-2, 0), and the directrix is $x = \frac{3}{2}$. Identify the focus of the parabola, find its equation, and then sketch the graph.

Definition 10.2: "Let P_1 and P_2 be two points in the plane, and let *k* be a number greater than the distance between P_1 and P_2 . The set of all points *P* in the plane such that $|P_1P| + |P_2P| = k$ is called an **ellipse**."

The text uses the distance formula to derive standard forms $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
, where $0 < b \le a$.

Note that a larger denominator under x^2 gives a horizontal orientation to an ellipse, and a larger denominator under y^2 gives a vertical orientation to an ellipse.

The reference lines are called the **major axis** and the **minor axis**, with the major axis being the longer of the two

(or in the special case of a circle, equal in length).

Geometric interpretation: 2a is the length of the major axis, and 2b is the length of the minor axis.

In standard position, the major axis will have equation either y = 0 (horizontal orientation) or x = 0 (vertical orientation).

The points P_1 and P_2 are called the **foci** (the plural of focus).

Given $c = \sqrt{a^2 - b^2}$ (Pythagorean/distance formula), in standard position, the foci will have coordinates of

either (-c, 0) and (c, 0) when there is a horizontal orientation

or (0, -c) and (0, c) when there is a vertical orientation.

Geometric interpretation: 2c is the distance between the two foci.

When a = b, the major axis and the minor axis have the same length, and the two foci are a single point: the center of a circle.

Applications:

The points where the major axis intersects the ellipse are the vertices.

In standard position, the vertices will have coordinates of

either (-a, 0) and (a, 0) when there is a horizontal orientation

or (0, -a) and (0, a) when there is a vertical orientation.

In standard position, an ellipse (either orientation) will be symmetric with respect to the *x*-axis, the *y*-axis and also the origin.

An ellipse has no asymptotes.

The non-standard position forms are
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
 and $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$.

We can use shifts/translations (just like in Algebra) to help us graph or answer questions. For finding derivatives, we have implicit differentiation (section 3.6).

Example B. An ellipse passes through the points $\left(1, \frac{\sqrt{27}}{2}\right)$ and $\left(-\frac{1}{2}, \frac{\sqrt{135}}{4}\right)$

and is in standard position. Find the equation and sketch the graph.

_	_	_	_		-	-	-	-	-

Definition 10.3: "Let P_1 and P_2 be two points in the plane, and let k be a positive number less than the distance between P_1 and P_2 . The set of all points P in the plane such that $||P_1P| - |P_2P|| = k$ called a **hyperbola**."

The text uses the distance formula to derive standard forms $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1.$$

The points P_1 and P_2 are called the **foci** (the plural of focus).

Given $c = \sqrt{a^2 + b^2}$ (Pythagorean/distance formula), in standard position, the foci will have coordinates of

either (-c, 0) and (c, 0) when there is a horizontal orientation

or (0, -c) and (0, c) when there is a vertical orientation.

Geometric interpretation: 2c is the distance between the two foci.

The point located halfway between the two foci is called the **center** of the hyperbola. In standard position, the center of the hyperbola will have coordinates (0, 0).

The reference line, the line through the two foci, is called the **principal axis**.

In standard position, the major axis will have equation either y = 0 (horizontal orientation) or x = 0 (vertical orientation).

The points where the principal axis intersects the hyperbola are the **vertices**.

In standard position, the vertices will have coordinates of

either (-a, 0) and (a, 0) when there is a horizontal orientation

or (0, -a) and (0, a) when there is a vertical orientation.

The line segment connecting the two vertices is called the transverse axis of the hyperbola.

Geometric interpretation: 2a is the length of the transverse axis.

In standard position, a hyperbola (either orientation) will be symmetric with respect to the *x*-axis, the *y*-axis and also the origin.

A hyperbola has two asymptotes: $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$ (when there is a horizontal orientation) or $y = \frac{a}{b}x$ and

 $y = -\frac{a}{b}x$ (when there is a vertical orientation).

Examples of hyperbolic applications are noted in the text.

The non-standard position forms are $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ and $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$.

We can use shifts/translations (just like in Algebra) to help us graph or answer questions. For finding derivatives, we have implicit differentiation (section 3.6).

Example C. A hyperbola has foci $(0, -\sqrt{13})$ and $(0, \sqrt{13})$, has asymptotes $y = -\frac{2}{3}x$ and $y = \frac{2}{3}x$, and is in standard position. Find the equation and sketch the graph.

